Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.611
Filtrar
1.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607027

RESUMO

The pro-protein convertase FURIN (PCSK3) is implicated in a wide range of normal and pathological biological processes such as infectious diseases, cancer and cardiovascular diseases. Previously, we performed a systemic inhibition of FURIN in a mouse model of atherosclerosis and demonstrated significant plaque reduction and alterations in macrophage function. To understand the cellular mechanisms affected by FURIN inhibition in myeloid cells, we optimized a CRISPR-mediated gene deletion protocol for successfully deriving hemizygous (HZ) and nullizygous (NZ) FURIN knockout clones in U937 monocytic cells using lipotransfection-based procedures and a dual guide RNA delivery strategy. We observed differences in monocyte and macrophage functions involving phagocytosis, lipid accumulation, cell migration, inflammatory gene expression, cytokine release patterns, secreted proteomics (cytokines) and whole-genome transcriptomics between wild-type, HZ and NZ FURIN clones. These studies provide a mechanistic basis on the possible roles of myeloid cell FURIN in cardiovascular disorders.


Assuntos
Furina , Monócitos , Humanos , Animais , Camundongos , Monócitos/metabolismo , Furina/genética , Furina/metabolismo , Células U937 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Multiômica , RNA Guia de Sistemas CRISPR-Cas , Citocinas/genética
2.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607023

RESUMO

Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.


Assuntos
Linfoma Cutâneo de Células T , Micose Fungoide , Síndrome de Sézary , Neoplasias Cutâneas , Humanos , Citocinas/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/etiologia , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Micose Fungoide/patologia , Síndrome de Sézary/terapia , Síndrome de Sézary/genética , Interferon gama , Microambiente Tumoral
3.
Cell Mol Life Sci ; 81(1): 176, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598021

RESUMO

Inflammation is a mediator of a number of chronic pathologies. We synthesized the diethyl (9Z,12Z)-octadeca-9,12-dien-1-ylphosphonate, called NKS3, which decreased lipopolysaccharide (LPS)-induced mRNA upregulation of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) not only in primary intraperitoneal and lung alveolar macrophages, but also in freshly isolated mice lung slices. The in-silico studies suggested that NKS3, being CD36 agonist, will bind to GPR120. Co-immunoprecipitation and proximity ligation assays demonstrated that NKS3 induced protein-protein interaction of CD36 with GPR120in RAW 264.7 macrophage cell line. Furthermore, NKS3, via GPR120, decreased LPS-induced activation of TAB1/TAK1/JNK pathway and the LPS-induced mRNA expression of inflammatory markers in RAW 264.7 cells. In the acute lung injury model, NKS3 decreased lung fibrosis and inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and nitric oxide (NO) production in broncho-alveolar lavage fluid. NKS3 exerted a protective effect on LPS-induced remodeling of kidney and liver, and reduced circulating IL-1ß, IL-6 and TNF-α concentrations. In a septic shock model, NKS3 gavage decreased significantly the LPS-induced mortality in mice. In the last, NKS3 decreased neuroinflammation in diet-induced obese mice. Altogether, these results suggest that NKS3 is a novel anti-inflammatory agent that could be used, in the future, for the treatment of inflammation-associated pathologies.


Assuntos
Endotoxemia , Animais , Camundongos , Endotoxemia/induzido quimicamente , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação , Antígenos CD36/genética , Citocinas/genética , Interleucina-1beta/genética , RNA Mensageiro , Ácidos Graxos
4.
PLoS One ; 19(4): e0301330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568894

RESUMO

The ongoing COVID-19 pandemic has led to the emergence of new SARS-CoV-2 variants as a result of continued host-virus interaction and viral genome mutations. These variants have been associated with varying levels of transmissibility and disease severity. We investigated the phenotypic profiles of six SARS-CoV-2 variants (WT, D614G, Alpha, Beta, Delta, and Omicron) in Calu-3 cells, a human lung epithelial cell line. In our model demonstrated that all variants, except for Omicron, had higher efficiency in virus entry compared to the wild-type. The Delta variant had the greatest phenotypic advantage in terms of early infection kinetics and marked syncytia formation, which could facilitate cell-to-cell spreading, while the Omicron variant displayed slower replication and fewer syncytia formation. We also identified the Delta variant as the strongest inducer of inflammatory biomarkers, including pro-inflammatory cytokines/chemokines (IP-10/CXCL10, TNF-α, and IL-6), anti-inflammatory cytokine (IL-1RA), and growth factors (FGF-2 and VEGF-A), while these inflammatory mediators were not significantly elevated with Omicron infection. These findings are consistent with the observations that there was a generally more pronounced inflammatory response and angiogenesis activity within the lungs of COVID-19 patients as well as more severe symptoms and higher mortality rate during the Delta wave, as compared to less severe symptoms and lower mortality observed during the current Omicron wave in Thailand. Our findings suggest that early infectivity kinetics, enhanced syncytia formation, and specific inflammatory mediator production may serve as predictive indicators for the virulence potential of future SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Virulência , Pandemias , Citocinas/genética , Biomarcadores , Células Gigantes
5.
BMC Genomics ; 25(1): 333, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570739

RESUMO

BACKGROUND: The closed poultry houses integrated with a longitudinal water curtain cooling system (LWCCS) are widely used in modern poultry production. This study showed the variations in environmental conditions in closed houses integrated with a longitudinal water curtain cooling system. We evaluated the influence of different environmental conditions on duck growth performance and the transcriptome changes of immune organs, including the bursa of Fabricius and the spleen. RESULT: This study investigated the slaughter indicators and immune organ transcriptomes of 52-day-old Cherry Valley ducks by analyzing the LWCC at different locations (water curtain end, middle position, and fan cooling end). The results showed that the cooling effect of the LWCCS was more evident from 10:00 a.m. -14:00. And from the water curtain end to the fan cooling end, the hourly average temperature differently decreased by 0.310℃, 0.450℃, 0.480℃, 0.520℃, and 0.410℃, respectively (P < 0.05). The daily and hourly average relative humidity decreased from the water curtain end to the fan cooling end, dropping by 7.500% and 8.200%, respectively (P < 0.01). We also observed differences in production performance, such as dressing weight, half-eviscerated weight, skin fat rate, and percentage of abdominal fat (P < 0.01), which may have been caused by environmental conditions. RNA-sequencing (RNA-seq) revealed 211 and 279 differentially expressed genes (DEGs) in the ducks' bursa of Fabricius and spleen compared between the water curtain end and fan cooling end, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the two organs showed the DEGs were mainly enriched in cytokine-cytokine receptor interaction, integral component of membrane, Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, etc. Our results implied that full-closed poultry houses integrated with LWCCS could potentially alter micro-environments (water curtain vs. fan cooling), resulting in ducks experiencing various stressful situations that eventually affect their immunity and production performance. CONCLUSION: In this study, our results indicated that uneven distributions of longitudinal environmental factors caused by LWCCS would affect the dressed weight, breast muscle weight, skin fat rate, and other product performance. Moreover, the expression of immune-related genes in the spleen and bursa of ducks could be affected by the LWCCS. This provides a new reference to optimize the use of LWCCS in conjunction with close duck houses in practical production.


Assuntos
Patos , Transcriptoma , Animais , Patos/genética , Patos/metabolismo , Transdução de Sinais , Citocinas/genética , Perfilação da Expressão Gênica
6.
Curr Med Sci ; 44(2): 261-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561595

RESUMO

DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.


Assuntos
Ataxia Telangiectasia , Citocinas , Humanos , Citocinas/genética , Ataxia Telangiectasia/genética , Dano ao DNA , DNA/metabolismo , Transdução de Sinais
7.
J Cell Mol Med ; 28(8): e18311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634217

RESUMO

Interleukin-6 (IL-6), a pivotal pro-inflammatory cytokine, is closely linked to vascular wall thickening and atherosclerotic lesion. Since serum IL-6 levels are largely determined by the genetic variant in IL-6, this study was conducted to investigate whether the IL-6 variant impacts cardiometabolic profile and the risk of premature coronary artery disease (PCAD). PubMed, Cochrane Library, Central, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and ClinicalTrials.gov were searched from May 13, 2022 to June 28, 2023. In total, 40 studies (26,543 individuals) were included for the analysis. The rs1800795 (a function variant in the IL-6 gene) C allele was linked to higher levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), fasting plasma glucose (FPG), body mass index (BMI), and waist circumference (WC), and a lower levels of high-density lipoprotein cholesterol (HDL-C). However, no significant association was observed of rs1800795 with triglycerides (TG), systolic blood pressure (SBP), and diastolic blood pressure (DBP). Interestingly, a significant association was detected between rs1800795 and PCAD. Subgroup analyses indicted that the impacts of rs1800795 on cardiometabolic risk factors were significant in Caucasians but stronger in obese patients. In contrast, the impact of rs1800795 on PCAD was significant in brown race population. In summary, rs1800795 had a slight but significant impact on cardiometabolic risk factors and PCAD. IL-6 inhibition with ziltivekimab or canakinumab may benefit high-risk populations (e.g. brown race population, Caucasians, obese patients, etc.) with rs1800795 to prevent PCAD.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/genética , Citocinas/genética , Interleucina-6 , Fatores de Risco , Obesidade/complicações , HDL-Colesterol , Triglicerídeos , Doenças Cardiovasculares/etiologia
8.
Methods Mol Biol ; 2782: 195-208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622404

RESUMO

As part of the adaptive immune system, T cells are critical to maintain immune homeostasis. T cells provide protective immunity by killing infected cells and combatting cancerous cells. To do so, T cells produce and secrete effector molecules, such as granzymes, perforin, and cytokines such as tumor necrosis factor α and interferon γ. However, in immune suppressive environments, such as tumors, T cells gradually lose the capacity to perform their effector function. One way T cell effector function can be enhanced is through genetic engineering with tools such as clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9). This protocol explains in a step-by-step fashion how to perform a controlled electroporation-based CRISPR experiment to enhance human T cell effector function. Of note, these steps are suitable for CRISPR-mediated genome editing in T cells in general and can thus also be used to study proteins of interest that do not influence T cell effector function.


Assuntos
Sistemas CRISPR-Cas , Linfócitos T , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Citocinas/genética
9.
Pestic Biochem Physiol ; 200: 105830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582593

RESUMO

Chlorantraniliprole (CAP) is a bis-amide pesticide used for pest control mainly in agricultural production activities and rice-fish co-culture systems. CAP residues cause liver damage in non-target organism freshwater fish. However, it is unclear whether CAP-exposure-induced liver injury in fish is associated with mitochondrial dysfunction-mediated mitophagy, ferroptosis, and cytokines. Therefore, we established grass carp hepatocyte models exposed to different concentrations of CAP (20, 40, and 80 µM) in vitro. MitoSOX probe, JC-1 staining, immunofluorescence double staining, Fe2+ staining, lipid peroxidation staining, qRT-PCR, and Western blot were used to verify the physiological regulatory mechanism of CAP induced liver injury. In the present study, the CAP-treated groups exhibited down-regulation of antioxidant-related enzyme activities and accumulation of peroxides. CAP treatment induced an increase in mitochondrial reactive oxygen species (mtROS) levels and altered expression of mitochondrial fission/fusion (Drp1, Fis1, Mfn1, Mfn2, and Opa1) genes in grass carp hepatocytes. In addition, mitophagy (Parkin, Pink1, p62, LC3II/I, and Beclin-1), ferroptosis (GPX4, COX2, ACSL4, FTH, and NCOA4), and cytokine (IFN-γ, IL-18, IL-17, IL-6, IL-10, IL-1ß, IL-2, and TNF-α)-related gene expression was significantly altered. Collectively, these findings suggest that CAP exposure drives mitophagy activation, ferroptosis occurrence, and cytokine homeostasis imbalance in grass carp hepatocytes by triggering mitochondrial dysfunction mediated by the mtROS-mitochondrial fission/fusion axis. This study partly explained the physiological regulation mechanism of grass carp hepatocyte injury induced by insecticide CAP from the physiological and biochemical point of view and provided a basis for evaluating the safety of CAP environmental residues to non-target organisms.


Assuntos
Carpas , Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Doenças Mitocondriais , ortoaminobenzoatos , Animais , Citocinas/genética , Transdução de Sinais , Dinâmica Mitocondrial , Mitofagia , Hepatócitos , Homeostase
10.
Immun Inflamm Dis ; 12(4): e1234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578001

RESUMO

BACKGROUND AND OBJECTIVE: Long noncoding RNAs (lncRNAs) are crucial in regulating various physiological and pathological processes, including immune responses. LINC01686 is a lncRNA with previously uncharacterized functions in immune regulation. This study aims to investigate the function of LINC01686 in lipopolysaccharide (LPS)-induced inflammatory responses in the human monocytic leukemia cell line THP-1 and its potential regulatory mechanisms involving miR-18a-5p and the anti-inflammatory protein A20. METHOD: THP-1 cells were stimulated with LPS to induce inflammatory responses, followed by analysis of LINC01686 expression levels. The role of LINC01686 in regulating the expression of interleukin (IL)-6, IL-8, A20, and signal transducer and activator of transcription 1 (STAT1) was examined using small interfering RNA-mediated knockdown. Additionally, the involvement of miR-18a-5p in LINC01686-mediated regulatory pathways was assessed by transfection with decoy RNAs mimicking the miR-18a-5p binding sites of LINC01686 or A20 messenger RNA. RESULTS: LINC01686 expression was upregulated in THP-1 cells following LPS stimulation. Suppression of LINC01686 enhanced LPS-induced expression of IL-6 and IL-8, mediated through increased production of reactive oxygen species. Moreover, LINC01686 knockdown upregulated the expression and activation of IκB-ζ, STAT1, and downregulated A20 expression. Transfection with decoy RNAs reversed the effects of LINC01686 suppression on A20, STAT1, IL-6, and IL-8 expression, highlighting the role of LINC01686 in sponging miR-18a-5p and regulating A20 expression. CONCLUSION: This study provides the first evidence that LINC01686 plays a critical role in modulating LPS-induced inflammatory responses in THP-1 cells by sponging miR-18a-5p, thereby regulating the expression and activation of A20 and STAT1. These findings shed light on the complex regulatory mechanisms involving lncRNAs in immune responses and offer potential therapeutic targets for inflammatory diseases.


Assuntos
Citocinas , MicroRNAs , RNA Longo não Codificante , Humanos , Citocinas/genética , Citocinas/metabolismo , Interleucina-6 , Interleucina-8/metabolismo , Lipopolissacarídeos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Células THP-1
11.
PLoS Negl Trop Dis ; 18(3): e0012006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437246

RESUMO

BACKGROUND: Imported cutaneous leishmaniasis (CL) is a growing problem with increasing global travel to endemic areas. Returned travelers with CL are easy to be misdiagnosed and mistreated due to the lack of awareness for the disease to the physicians in non-endemic region that may lead to unfavorable outcome. Our study intends to summarize the characteristics of Leishmania infection imported from Iraq, so as to help Chinese physicians diagnose and treat the disease. All CL patients were treated with intralesional injection of antimony. METHODS: The definitive diagnosis of CL is based on the parasite identification by microscopic examination directly on lesion smear or parasite culture, PCR amplification of Leishmania-specific internal transcribed spacer 1 (ITS-1). The phylogenetic analysis, the immunopathological examination and the cytokine detection were proceeded after the diagnosis. RESULTS: We have identified 25 CL cases in migrant Chinese workers returned from Iraq for the first time with L. major as the major species of infected Leishmania parasite. Clinical features of the Iraq-imported CL include the history of skin exposure to sandflies bite and the lesions mostly on the exposed limbs. More ulcerative wet lesion was observed than nodular dry lesion. PCR is not only used to detect Leishmania parasite with high sensitivity, but also to identify the species of infected parasite through sequencing the amplified Leishmania-specific ITS-1 gene. The phylogenetic analysis based on the amplified ITS-1 sequences revealed that the infected Leishmania was closed related to the species and strains endemic in Iraq. The immunopathological examination revealed the T-cell filtrated cellular immune response with less B cells and NK cells involved. The cytokine profile measured in the skin lesion also confirmed the Th1 cellular response with higher expression levels of IFN-γ, IL-6 and IL-8. The skin lesions in CL patients were healed after being treated locally with antimony. CONCLUSIONS: The clinical and parasitological features of these Chinese CL cases imported from Iraq provide useful information for the diagnosis and treatment of CL that is not commonly seen in Chinese local population.


Assuntos
Leishmania , Leishmaniose Cutânea , Migrantes , Humanos , Filogenia , Antimônio , Iraque , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/epidemiologia , Leishmania/genética , Citocinas/genética , China/epidemiologia
12.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547321

RESUMO

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Assuntos
Vacina contra a Peste , Vacinas , Yersinia pestis , Humanos , Animais , Camundongos , Yersinia pestis/genética , Fases de Leitura Aberta , Vacina contra a Peste/genética , Citocinas/genética
13.
J Autoimmun ; 144: 103186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428111

RESUMO

Giant cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries. MiRNAs are small, non-coding RNAs that inhibit gene expression at post-transcriptional level. Several miRNAs have been shown to be dysregulated in temporal artery biopsies (TABs) from GCA patients, but their role is unknown. The aims of the present work were: to gain insight into the link between inflammation and miRNA up-regulation in GCA; to identify the role of miR-146a and miR-146b. Primary cultures from TABs were treated with IL-1ß, IL-6, soluble IL-6R (sIL6R), IL-17, IL-22, IFNγ, LPS and PolyIC. Correlations between cytokine mRNA and miRNA levels were determined in inflamed TABs. Primary cultures from TABs, human aortic endothelial and smooth muscle cells and ex-vivo TAB sections were transfected with synthetic miR-146a and miR-146b to mimic miRNA activities. Cell viability, target gene expression, cytokine levels in culture supernatants were assayed. Treatment of primary cultures from TABs with IL-1ß and IL-17 increased miR-146a expression while IL-1ß, IL-6+sIL6R and IFNγ increased miR-146b expression. IFNγ and IL-1ß mRNA levels correlated with miR-146a/b levels. Following transfection, cell viability decreased only in primary cultures from TABs. Moreover, transfection of miR-146a/b mimics increased ICAM-1 gene expression and production of the soluble form of ICAM-1 by primary cultures from TABs and by ex-vivo TABs. ICAM-1 expression was higher in inflamed than normal TABs and ICAM-1 levels correlated with miR-146a/b levels. Expression of miR-146a and miR-146b in GCA appeared to be driven by inflammatory cytokines (e.g. IL-1ß, IFNγ). miR-146a and miR-146b seem responsible for the increase of soluble ICAM-1.


Assuntos
Arterite de Células Gigantes , MicroRNAs , Humanos , Arterite de Células Gigantes/genética , Interleucina-17/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Molécula 1 de Adesão Intercelular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/genética , Interleucina-1beta , RNA Mensageiro/metabolismo
14.
Tunis Med ; 102(3): 129-133, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38545706

RESUMO

INTRODUCTION: Febrile seizures (FS) are the most common neurologic disorder seen in children. Caused mainly by fever without any damage to the central nervous system (CNS). The associations of several factors, which we can find in the inflammatory response and genetic predisposition, are involved in the occurrence of FS. AIM: This review provides insight into risk factors, particularly the involvement of the inflammatory response and genetic susceptibility in the occurrence of FS. METHODS: A PubMed search was performed using the keywords « febrile seizures ¼, « inflammatory response ¼, « Pro-inflammatory cytokines ¼, «And anti-inflammatory cytokines ¼. The search strategy included meta-analyses, prospective case-control studies, clinical trials, observational studies, and reviews. RESULTS: Febrile seizures with a peak incidence of 18 months usually occur between 6 months and 5 years. A variety of genetic, inflammatory, and environmental factors, including viruses and vaccines, trigger FS. A positive family history of febrile seizures increases the risk for FS occurrence with (20%) in siblings and (33%) in one parent. The involvement of inflammatory response genes, including the cytokine genes IL1B, IL1R, IL6, and IL4. According to these findings, FS is associated with the activation of a cascade of pro- and anti-inflammatory cytokines and the unbalance between these cytokines in the inflammation regulation plays a role in the development of FS. CONCLUSION: Current knowledge suggests that genetic susceptibility and inflammatory response dysregulation contribute to FS's genesis.


Assuntos
Convulsões Febris , Criança , Humanos , Convulsões Febris/etiologia , Convulsões Febris/genética , Citocinas/genética , Fatores de Risco , Predisposição Genética para Doença , Anti-Inflamatórios
15.
J Ethnopharmacol ; 327: 118026, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490288

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Viscum coloratum (Kom.) Nakai has been traditionally used in China for nearly a thousand years to treat rheumatic diseases. However, its efficacy and mechanisms in treating rheumatoid arthritis (RA) have not been demonstrated. AIM OF THE STUDY: To investigate the anti-arthritic effects and molecular mechanisms of Viscum coloratum (Kom.) Nakai on collagen-induced arthritic mice through network pharmacology technology and experimental validation. MATERIALS AND METHODS: First, the main ingredients of the extract of Viscum coloratum (Kom.) Nakai (EVC) were identified through chemical composition characterization using Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS). Then, the collagen-induced arthritis (CIA) model was established in DBA/1 J mice and the ameliorative effects of EVC on the progression of CIA mice were evaluated by oral treatment with different doses of the EVC for 28 days. After that, cytokine antibody microarray assay was used to detect the levels of multiple inflammation-related cytokines and chemokines in each group, and performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis. Subsequently, the potential target for the effective chemical components of EVC in treating RA was identified using various databases. Additionally, a drug-disease target protein-protein interaction network (PPI) was conducted using Cytoscape for visualization and clustering, while GO and KEGG enrichment analyses were performed with the Metascape database. Finally, identified phenotypes and targets by network pharmacology analysis were experimentally validated in vivo. RESULTS: Treatment with EVC significantly suppressed the severity of CIA with a dramatic reduction of paw swelling, arthritis index, levels of IgGs (IgG, IgG1, IgG2a, and IgG2b), multi-inflammation-related cytokines and chemokines on the progression of CIA. Histopathological examinations showed EVC could markedly inhibit inflammatory cell infiltration, tartrate-resistant acid phosphatase (TRAP) activity of osteoclast, and bone destruction. Furthermore, GO and KEGG enrichment analyses revealed that EVC could ameliorate RA by inhibiting osteoclast differentiation and regulating multiple signaling pathways including Osteoclast differentiation, IL-17, and TNF. PPI network analysis demonstrated that AKT1, MMP9, MAPK3, and other genes were highly related to EVC in treating RA. Finally, we proved that EVC could inhibit the expression of NFTAc1, MMP9, Cathepsin K, and AKT which were closely related to osteoclast activity. CONCLUSIONS: EVC could treat RA through multiple components, multiple targets, and multiple pathways. The present study demonstrated the therapeutic efficacy of EVC and its molecular mechanisms in treating RA, indicating that it would be a potent candidate as a novel botanical drug for further investigation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Viscum , Camundongos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Metaloproteinase 9 da Matriz , Cromatografia Líquida , Viscum/química , Espectrometria de Massas em Tandem , Camundongos Endogâmicos DBA , Citocinas/genética , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Quimiocinas , Colágeno , Medicamentos de Ervas Chinesas/efeitos adversos
16.
J Agric Food Chem ; 72(13): 7033-7042, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507725

RESUMO

Asthma is recognized as a chronic respiratory illness characterized by airway inflammation and airway hyperresponsiveness. Wogonoside, a flavonoid glycoside, is reported to significantly alleviate the inflammation response and oxidative stress. Herein, this study aimed to investigate the therapeutic effect and underlying mechanism of wogonoside on airway inflammation and mucus hypersecretion in a murine asthma model and in human bronchial epithelial cells (16HBE). BALB/c mice were sensitized and challenged with ovalbumin (OVA). Pulmonary function and the number of cells in the bronchoalveolar lavage fluid (BALF) were examined. Pathological changes in lung tissue in each group were evaluated via hematoxylin and eosin and periodic acid-Schiff staining, and changes in levels of cytokines in BALF and of immunoglobulin E in serum were determined via an enzyme-linked immunosorbent assay. The expression of relevant genes in lung tissue was analyzed via real-time PCR. Western blotting and immunofluorescence were employed to detect the expression of relevant proteins in lung tissue and 16HBE cells. Treatment with 10 and 20 mg/kg wogonoside significantly attenuated the OVA-induced increase of inflammatory cell infiltration, mucus secretion, and goblet cell percentage and improved pulmonary function. Wogonoside treatment reduced the level of T-helper 2 cytokines including interleukin (IL)-4, IL-5, and IL-13 in BALF and of IgE in serum and decreased the mRNA levels of cytokines (IL-4, IL-5, IL-6, IL-13, and IL-1ß and tumor necrosis factor-α), chemokines (CCL-2, CCL-11, and CCL-24), and mucoproteins (MUC5AC, MUC5B, and GOB5) in lung tissues. The expression of MUC5AC and the phosphorylation of STAT6 and NF-κB p65 in lung tissues and 16HBE cells were significantly downregulated after wogonoside treatment. Thus, wogonoside treatment may effectively decrease airway inflammation, airway remodeling, and mucus hypersecretion via blocking NF-κB/STAT6 activation.


Assuntos
Asma , Flavanonas , Glucosídeos , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Ovalbumina/efeitos adversos , Ovalbumina/metabolismo , Interleucina-13 , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Interleucina-5/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/genética , Pulmão/metabolismo , Inflamação/metabolismo , Muco/metabolismo , Citocinas/genética , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia
17.
J Agric Food Chem ; 72(13): 7140-7154, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518253

RESUMO

Microplastics derived from plastic waste have emerged as a pervasive environmental pollutant with potential transfer and accumulation through the food chain, thus posing risks to both ecosystems and human health. The gut microbiota, tightly intertwined with metabolic processes, exert substantial influences on host physiology by utilizing dietary compounds and generating bacterial metabolites such as tryptophan and bile acid. Our previous studies have demonstrated that exposure to microplastic polystyrene (PS) disrupts the gut microbiota and induces colonic inflammation. Meanwhile, intervention with cyanidin-3-O-glucoside (C3G), a natural anthocyanin derived from red bayberry, could mitigate colonic inflammation by reshaping the gut bacterial composition. Despite these findings, the specific influence of gut bacteria and their metabolites on alleviating colonic inflammation through C3G intervention remains incompletely elucidated. Therefore, employing a C57BL/6 mouse model, this study aims to investigate the mechanisms underlying how C3G modulates gut bacteria and their metabolites to alleviate colonic inflammation. Notably, our findings demonstrated the efficacy of C3G in reversing the elevated levels of pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and the upregulation of mRNA expression (Il-6, Il-1ß, and Tnf-α) induced by PS exposure. Meanwhile, C3G effectively inhibited the reduction in levels (IL-22, IL-10, and IL-4) and the downregulation of mRNA expression (Il-22, Il-10, and Il-4) of anti-inflammatory cytokines induced by PS exposure. Moreover, PS-induced phosphorylation of the transcription factor NF-κB in the nucleus, as well as the increased level of protein expression of iNOS and COX-2 in the colon, were inhibited by C3G. Metabolisms of gut bacterial tryptophan and bile acids have been extensively implicated in the regulation of inflammatory processes. The 16S rRNA high-throughput sequencing disclosed that PS treatment significantly increased the abundance of pro-inflammatory bacteria (Desulfovibrio, norank_f_Oscillospiraceae, Helicobacter, and Lachnoclostridium) while decreasing the abundance of anti-inflammatory bacteria (Dubosiella, Akkermansia, and Alistipes). Intriguingly, C3G intervention reversed these pro-inflammatory changes in bacterial abundances and augmented the enrichment of bacterial genes involved in tryptophan and bile acid metabolism pathways. Furthermore, untargeted metabolomic analysis revealed the notable upregulation of metabolites associated with tryptophan metabolism (shikimate, l-tryptophan, indole-3-lactic acid, and N-acetylserotonin) and bile acid metabolism (3b-hydroxy-5-cholenoic acid, chenodeoxycholate, taurine, and lithocholic acid) following C3G administration. Collectively, these findings shed new light on the protective effects of dietary C3G against PS exposure and underscore the involvement of specific gut bacterial metabolites in the amelioration of colonic inflammation.


Assuntos
Microbioma Gastrointestinal , Interleucina-10 , Camundongos , Animais , Humanos , Antocianinas/farmacologia , RNA Ribossômico 16S , Fator de Necrose Tumoral alfa/farmacologia , Plásticos/farmacologia , Poliestirenos/farmacologia , Interleucina-6/farmacologia , Interleucina-4 , Ecossistema , Triptofano/farmacologia , Camundongos Endogâmicos C57BL , Citocinas/genética , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Anti-Inflamatórios/farmacologia , Glucosídeos/farmacologia , Ácidos e Sais Biliares/farmacologia , RNA Mensageiro
18.
PeerJ ; 12: e16934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529304

RESUMO

Background: Ischemic stroke (IS) is the main cause of death and adult disability. However, the pathogenesis of this complicated disease is unknown. The present study aimed to assess the relationship between ITLN1 single nucleotide polymorphisms (SNPs) and the susceptibility to IS in Xi'an population, Shaanxi province. Methods: In this study, we designed polymerase chain reaction (PCR) primers located at -3,308 bp upstream of the transcription initiation site within promoter region of the ITLN1 gene. The target fragment was amplified by PCR and identified by agarose gel electrophoresis. Sanger sequencing was then performed in the samples extracted from a cohort comprising 1,272 participants (636 controls and 636 cases), and the obtained sequences were compared with the reference sequences available on the National Center for Biotechnology Information (NCBI) website to detect SNPs in the ITLN1 gene promoter region. Logistic regression analysis was employed to assess the relationship between ITLN1 polymorphisms and IS risk, with adjustments for age and gender. Significant positive results were tested by false-positive report probability (FPRP) and false discovery rate (FDR). The interaction among noteworthy SNPs and their predictive relationship with IS risk were explored using the Multi-Factor Dimensionality Reduction (MDR) software. Results: The results of Sanger sequencing were compared with the reference sequences on the NCBI website, and we found 14 SNPs in ITLN1 gene promoter satisfied Hardy-Weinberg equilibrium (HWE). Logistic regression analysis showed that ITLN1 was associated with a decreased risk of IS (rs6427553: Homozygous C/C: adjusted OR: 0.69, 95% CI [0.48-0.97]; Log-additive: adjusted OR: 0.83, 95% CI [0.70-0.98]; rs7411035: Homozygous G/G: adjusted OR: 0.66, 95% CI [0.47-0.94]; Dominant G/T-G/G: adjusted OR: 0.78, 95% CI [0.62-0.98]; Log-additive: adjusted OR: 0.81, 95% CI [0.69-0.96]; rs4656958: Heterozygous G/A: adjusted OR: 0.74, 95% CI [0.59-0.94]; Homozygous A/A: adjusted OR: 0.51, 95% CI [0.31-0.84]; Dominant G/A-A/A: adjusted OR: 0.71, 95% CI [0.57-0.89]; Recessive A/A: adjusted OR: 0.59, 95% CI [0.36-0.96]; Log-additive: adjusted OR: 0.73, 95% CI [0.61-0.88]), especially in people aged less than 60 years and males. Conclusions: In short, our study revealed a correlation between ITLN1 variants (rs6427553, rs7411035 and rs4656958) and IS risk in Xi'an population, Shaanxi province, laying a foundation for ITLN1 gene as a potential biomarker for predicting susceptibility to IS.


Assuntos
AVC Isquêmico , Polimorfismo de Nucleotídeo Único , Adulto , Humanos , Biomarcadores , Predisposição Genética para Doença/genética , Heterozigoto , AVC Isquêmico/genética , Polimorfismo de Nucleotídeo Único/genética , Citocinas/genética , Lectinas/genética , Proteínas Ligadas por GPI/genética
19.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38521981

RESUMO

It is a problem that influenza virus infection increases susceptibility to secondary bacterial infection in lungs leading to lethal pneumonia. We previously reported that exopolysaccharides (EPS) derived from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (OLL1073R-1) could prevent against influenza virus infection followed by secondary bacterial infection in vitro. Therefore, the present study assessed whether EPS derived OLL1073R-1 protects the alveolar epithelial barrier disfunction caused by influenza virus infection. After A549 cells treated with EPS or without EPS were infected influenza virus A/Puerto Rico/8/34 (IFV) for 12 h, the levels of tight junction genes expression and inflammatory genes expression were measured by reverse transcription polymerase chain reaction. As results, EPS treatment could protect against low-titer IFV infection, but not high-titer IFV infection, followed by suppression of the increased expression of inflammatory cytokine gene levels and recovery of the decrease in the expression level of ZO-1 gene that was caused by low-titer IFV infection, leading to an improvement trend in the barrier function. Our findings showed that EPS derived from OLL1073R-1 could inhibit low-titer IFV infection leading to maintenance of the epithelial barrier function through the suppression of inflammatory cytokine genes expression.


Assuntos
Infecções Bacterianas , Influenza Humana , Lactobacillus delbrueckii , Orthomyxoviridae , Humanos , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Junções Íntimas , Citocinas/genética , Citocinas/metabolismo
20.
PLoS Pathog ; 20(3): e1012128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547254

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/ß) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1ß (nsp1ß) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1ß as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1ß gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-ß expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.


Assuntos
Coinfecção , Interferon Tipo I , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Citocinas/genética , Citocinas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Macrófagos Alveolares/metabolismo , Interferon Tipo I/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...